M1.A

M2.(a) (i) 11 (m)
B1
(ii) Use of $F=k \Delta L$ or $W=m g$ Allow use of $\Delta L=12 \mathrm{~m}$

C1
3400 (N)
(b) Sets $m g=k \Delta L$

C1
1.9 (m)
$\begin{array}{cc} & \mathrm{A} 1 \\ \text { (c) } \begin{array}{c}\text { Correct use of } W=1 / 2 k \Delta L^{2} \text { or } 1 / 2 F \Delta L \\ \Delta L=5 m\end{array} & \mathrm{C} 1 \\ \text { Correct use of } \Delta G P E=m g \Delta h & \mathrm{C} 1\end{array}$

```
\(19\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\) cnao
```

(d) Same kinetic energy when rope begins to stretch

B1
More work done per unit extension / stops in shorter distance
"Shorter time" gets no credit
B1
Increases force on jumper (increasing the risk of injury)
B1

Penalize use of $g=10$ here only (35 077 N)
Allow 9.8 in any question
Correct answer only, gets both marks for all two mark questions
(b) (i) $\left(E_{\kappa}=1 / 2 m v^{2}\right)$
$=1 / 2 \times 8300 \times 56^{2}$
$=1.3 \times 10^{7}(\mathrm{~J}) \checkmark(13014400)$ allow use of 8300 only
In general: Penalise transcription errors and rounding errors in answers
(ii) $m g h=$ KE (13 014 400) for $m g h$ allow GPE or E_{ρ}

OR 13014400 / 81423
$\mathrm{h}=160(\mathrm{~m}) \checkmark(159.8)$ ecf 1 bi
Allow use of suvat approach
(c) (i) (work done) by friction \backslash drag \backslash air resistance \backslash resistive forces (energy converted) to internal \backslash thermal energy

Allow 'heat'
(b) (i) $\quad(F=75 \times 9.81 \times) \sin 25\left(^{\circ}\right) \checkmark$ $=310(311,310.94)(\mathrm{N})$
use of $g=10$ not penalised here
'sin25' on its own
Use of $g=10$ yields 317
Allow cos65
(ii) $W=F s$

$$
=311 \times 2.0=620(622 \mathrm{~J}) \checkmark \text { ecf }(2 \mathrm{bi}) \times 2.0
$$

(c) Idea that GPE is ultimately transferred to: internal (energy) / 'heat'/ 'thermal' (energy in the surroundings)

Allow transfer of GPE to KE and then to 'thermal' etc Do not allow reference to 'sound' on its own

Correct reference to a named resistive force: friction / drag / air resistance \checkmark Don't accept implication that a resistive force is a form of energy

All GPE becomes 'heat', etc OR no (overall) increase in KE OR reference to work done against or by a resistive force

Do not allow references to loss of body heat.
Allow: '(GPE) not converted to KE'

M5. (a) GPE to $K E$ to GPE \checkmark
no energy lost (from system) / no work done against resistive forces
initial $G P E=$ final $(G P E) /$ initial $(G P E)=$ final GPE
OR $h=G P E / m g$ and these are all constant so h is the same
(b) Initial curve with decreasing gradient and reaching constant maximum speed before X and maintaining constant speed up to $X \checkmark$

B labelled in correct place \checkmark
B labelled in correct place AND constant speed maintained for remainder of candidates graph and line is straight \checkmark

(c) (first law) ball travels in a straight line at a constant speed / constant velocity / (maintains) uniform / no change in motion / zero acceleration there is no (external) unbalanced / resultant force acting on it

M6.(a) (i) $\quad(s=1 / 2(u+v) t) t=2 s / v \checkmark$ (correct rearrangement, either symbols or values) $(=100 / 6.7)=15 \checkmark(\mathrm{~s})(14.925)$ or alternative correct approach
(ii) $\quad\left(K E=1 / 2 m v^{2}=1 / 2 \times 83 \times 6.7^{2}\right)=1900 \checkmark(1862.9 \mathrm{~J})$

2 sf
(iii) GPE $=83 \times 9.81 \times 3.0 \checkmark$ penalise use of 10 , allow 9.8
$=2400(2443 \mathrm{~J}) \checkmark$ do not allow 2500 (2490) for use of $g=10$
(b) (i) $5300+3700$ (or 9000 seen)

$$
\begin{aligned}
& \text { or }-2443-1863 \text { (or (-) } 4306 \text { seen) } \\
& =4700(\mathrm{~J}) \checkmark(4694) \quad \text { ecf from parts aii \& aiii }
\end{aligned}
$$

(ii) mention of friction and appropriate location given mention of air resistance (or drag) do not allow energy losses or friction within the motor

Page 6

